
From Typed-Functional Semantic Web Services

to Proofs

Harry Halpin
H.Halpin@ed.ac.uk

School of Informatics
University of Edinburgh

2 Buccleuch Place
EH8 9LW Edinburgh

Scotland, UK

Keywords: Semantic Web Services, Proofs, Type Theory, Functional Pro-

gramming, Curry-Howard Isomorphism

1 Ontologies, Types, and Functions

Web standards are currently seen as increasingly fragmented between colloquial
XML, the Semantic Web, and Web Services. Semantic Web Services, while an
immensely productive area of research, has yet to reach in-roads and a large
user-base. We propose a minimalist, yet powerful, unifying framework built upon
solid computational and philosophical foundations: Web Services are functions,
ontologies are types, and therefore Semantic Web Services are typed functions.

Unlike OWL-S and WSMO that focus on automatic omposition, we focus
on users will want to manually create their service compositions using an actual
programming language, like WS-BPEL provides (Business Process Execution
Language, formerly BPEL4WS). However, WS-BPEL is a vast, sprawling im-
perative language that is difficult to analyze, much less prove anything about.
The W3C appears increasingly ready to endorse an approach (SAWSDL) based
on annotating input and outputs with RDF. What is needed is a minimal pro-
gramming language, with a straightforward formal semantics, that builds upon
SAWSDL and goes beyond workflows. Workflow tools are notoriously limited to
finite state automata so that while termination on the workflow level is guaran-
teed, they lack common constructs like iteration and recursion. In previous work,
we suggest that XML pipeline processing can be thought of as being “inside” an
XML document itself. The processing can be contained in a special namespace
that can then be mixed in arbitrary XML content. Using this syntax, an example
is given below in Figure 1.

2 The Curry Howard Isomorphism

While there has been extensive work using XML types, it makes sense to use
RDF as a typing regime since it allows both subtyping and propositions to be
stated about types. The Curry-Howard Isomorphism states that there is a tight

<fx:let xmlns:fx="http://www.ltg.ed.ac.uk/~ht/functionalXML">

<fx:bind name="myvariable">

<fx:include href="document.xml"/>

</fx:bind>

<fx:cond>

<fx:case test="$myvariable/document[@version = 1.0]">

<fx:transform stylesheet="http://www.example.com/xhtmlout.xsl">

<fx:decrypt>

<fx:include href="$myvariable"/>

</fx:decrypt>

</fx:transform>

</fx:case>

</fx:cond>

</fx:let>

Fig. 1. FunctionalXML

coupling between logics and type systems, and can be given the slogan “Proofs
are Programs.” It was originally formulated as a correspondence between the
typed lambda calculus and intuitionistic logic by the logician Curry and the
computer scientist Howard. They called it “Propositions are Types” since the
types of programs can be seen as formulae. So ‘p is a proof of proposition P ’ is
equivalent to ‘p is of type P ’ and both can be written as p : P .

For our example we use natural deduction-style proofs to determine proofs
about a Semantic Web Service composition. For example, if we have a service
that decrypts an XML document (E ⇒ U) and then we have another service
that taken a decrypted XML document transforms it into HTML (U ⇒ H),
we can then prove that if we have these two services we can take an encrypted
document and produce the HTML version (E ⇒ H), i.e. transitivity of impli-
cation. Assuming we have an encrypted document x (of type E), we can create
the proof that we can transform it into HTML as given in Figure 2.

h : (U ⇒ H)

[x : E]1 u : (E ⇒ U)

(ax) : U

(⇒E)

(h(ax)) : H

(⇒E)

λxE.(h(ax)) : (U ⇒ H)
(⇒I)1

Fig. 2. Example Proof using Curry Howard Isomorphism

While the proof assumes the existence of a particular XML document (x),
it discharges the assumption by abstracting over the XML document x using λ-
abstraction, proving the proof for any XML document of type E (any encrypted
document). The functional approach offers a principled way to compose Web
Services that takes full advantage of semantics and allows your ordinary XML
hacker in the street to get real value from Web Services and the Semantic Web.

