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Abstract.  In recent years, workflows have been increasingly used in scientific 
applications. This paper presents novel metadata reasoning capabilities that we 
have developed to support the creation of large workflows. They include 1) use 
of semantic web technologies in handling metadata constraints on file 
collections and nested file collections, 2) propagation and validation of 
metadata constraints from inputs to outputs in a workflow component, and 
through the links among components in a workflow, and 3) sub-workflows that 
generate metadata needed for workflow creation.  We show how we used 
these capabilities to support the creation of large workflows in an earthquake 
science application. 
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1   Introduction 

Scientists have growing needs to use computational workflows that address different 
aspects of the phenomenon under study [14, 5, 2, 28]. In recent years, uses of large 
workflows have been significantly increased.  Often they adopt grid-based 
environments that enable efficient execution of large workflows by making use of 
distributed shared resources [26,17].  In such cases, computations in scientific 
workflows are represented as grid jobs that describe components used, input files 
required, and output files that will be produced in distributed environment [4].   

Metadata describe the data products used and generated by workflow components. 
Semantic web techniques have been applied for metadata reasoning on workflows 
such as validation of input parameters based on provenance data using component 
semantics [27], representing and managing dependencies between data products [15], 
helping scientists relate and annotate data and services through ontology-based 
generation and management of provenance data [29], etc. However, most of the 
existing metadata reasoning approaches focus on analyses of provenance data that are 
created from execution [22] rather than generation of input and output file 
descriptions needed in the workflow before execution.  

The metadata reasoning capabilities of existing systems focus on files and simple 
collections and cannot effectively handle constraints on nested collections. Existing 
checks on files are limited to validation of inputs for individual components. However, 



often there are global constraints on inputs and outputs of multiple components, and 
the workflow should be validated against such constraints in order to prevent 
execution of invalid workflows and wasting of expensive computations.  
Unnecessary execution of individual components or multiple components in the given 
workflow should be detected and avoided when datasets that are equivalent to the 
ones to be produced exist.  

The creation of such large workflows requires several metadata reasoning 
capabilities:   

• Keeping track of constraints on datasets used (i.e. files and file collections), 
including global constraints among multiple components as well as local 
constraints within individual components.  

• Identifying datasets that are used and produced by the workflow efficiently. 
• Detecting equivalent datasets and prevent unnecessary execution of workflow 

parts when datasets already exist. 
• Managing large datasets and their provenance. 

This paper presents novel metadata reasoning capabilities that we have developed 
to support the creation of large workflows. They include 1) use of semantic web 
technologies in handling metadata constraints on file collections and nested file 
collections, 2) propagation and validation of metadata constraints from inputs to 
outputs in a workflow component, and through the links among components in a 
workflow, and 3) sub-workflows that generate metadata needed for workflow creation.  
We show how we used these capabilities to support the creation of large workflows in 
an earthquake science application.  

2   Motivation 

A computational workflow is a set of executable programs (called components) that 
are introduced and linked together to pass data products to each other.  The purpose 
of a computational workflow is to produce a desired end result from the combined 
computation of the programs.  We will call a computational workflow as a workflow 
in this paper for brevity. Whereas a workflow represents a flow of data products 
among executable components, a workflow template is an abstract specification of a 
workflow, with a set of nodes and links where each node is a placeholder for a 
component or component collections (for iterative execution of the program over file 
collections), and each link represents how the input and output parameters are 
connected. For example, Figure 1-(a) shows a template that has been used by 
earthquake scientists in SCEC (Southern California Earthquake Center) in Fall 2005. 
The template has two nodes (seismogram generation and calculation of spectral 
accelerations), each one containing a component collection. The workflow created 
from the template is shown in Figure 1-(b). This workflow has been used in 
estimating hazard level of a site with respect to spectral acceleration caused by 
ruptures and their variations over time. 

 



 

 

 

 

 

 

 

Figure 1:  Workflow creation for seismic hazard analysis in Fall 2005. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Workflow creation for seismic hazard analysis in Spring 2006.  
 
The workflow was generated from manually created scripts that specify how to 

bind files to input parameters of the components and what are the expected output file 
names. An important feature of the workflow is that their data products are stored in 
files, often organized in directory structures that reflect the structure of the 
workflows.  The names of the files and the directories follow conventions to encode 
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3971 independent instances for each rupture,  >100,000 variations for a site
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metadata information in the names such as the creation date or the relative area 
covered by the analysis.  Therefore, the scripts that generate the workflow must 
orchestrate the creation of very particular data identifiers, namely file names that 
comply with those conventions and are instantiated to the appropriate constants.  For 
example, a file containing the points for a hazard curve would be named using 
the rupture id and the fault id that were used in the simulation of the wave, as well as 
the lat-long of the location for the curve. The script included calls to functions or 
other scripts that generate information needed by the workflow (e.g. seismic 
parameter values). These manual ‘seam’ steps were not a part of the workflow. Most 
of the checks on the files and the collections were done by hand.  

Figure 2-(a) shows an extension in the template in Spring 2006. This extension 
was needed to include strain green tensors (SGTs) as additional data input for 
seismogram generation. As the workflow template and descriptions of components 
become more complex, the script based approach became infeasible.  First of all, 
there are more manual seam steps to handle. For example, since the SGT files that 
should be used in the workflow are unknown, the function that generates appropriate 
SGT file names should be executed beforehand.  Validation of the workflow requires 
more checks. For example, now we need to check whether the SGTs use in generating 
seismogram are consistent with the rupture variations used for calculating peak values. 
If the seismogram generation step uses ruptures for Pasadena and their corresponding 
SGTs but the peak value calculation uses a rupture variation map for LA, the 
execution of the workflow will fail. When there exists a dataset that is equivalent to 
the expected output from executions of some components (e.g.  SGT name datasets 
for Pasadena already exist), scientists could not easily identify them.  

In summary, generation of large workflows for this type of applications requires 
flexibility in adding or changing components to the template, systematic identification 
of files that are needed and generated by the workflow, incorporation of manual 
‘seam’ steps into the workflow (making them a part of the workflow), and automatic 
validation of files and collections that are used in the workflow. 

3   Approach 

In developing new metadata reasoning capabilities for workflow creation, we use a 
workflow creation framework called Wings [6]. Wings takes a workflow template and 
initial input file descriptions, and creates an abstract grid workflow called DAX 
(DAG XML description). A DAX is transformed into an executable concrete 
workflow through a mapping that assigns available grid resources for execution by 
Pegasus [4]. Wings uses OWL-DL for representing files and collections, components, 
workflow templates, and workflows [6]. Currently Jena supports the reasoning.  

In this work, Wings was extended to support metadata reasoning and generation. 
In order to support the above metadata reasoning capabilities, we have developed an 
approach for representing metadata constraints on files and collections, and a 
supporting metadata reasoner. Figure 3 highlights the parts that support metadata 
reasoning capabilities.  We are going to describe each in the following subsections. 
Although the descriptions rely on earthquake science examples, the same approach is 
used for other applications [6]. 



 
 
 
 
 
 
 
 
 
 
 
 
 

  Figure 3: Metadata reasoning for workflow creation 
 
3.1 Representing metadata constraints  

In creating workflows, the system needs to keep track of constraints on individual 
files, constraints on collections and their elements, constraints on inputs and outputs 
of each component, and global constraints among multiple components.  

3.1.1 Metadata constraints on individual files  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  Figure 4: Metadata constraints on individual files 
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Each file class can have one or more metadata properties associated with it. In 
representing metadata constraints of a file class, we use a skolem instance (e.g., 
RupVarFile_Skolem) that represents prototypical instances of the class. The metadata 
can describe what the file contains, how it was generated, how it can be used, etc. For 
example, a rupture variation file can have Ruptupre ID, SourceID, SlipRelaizationN, 
and HypoCenterN that represent what it contains. Each metadata property has value 
ranges and can have some initial values. Other constraints such as how to derive 
filenames from metadata can be represented using the skolem instance. The actual 
metadata property values of file instances can be used in checking constraints on input 
and output files/collections used in the workflow, as described below.  
 
3.1.2 Handling constraints on nested collections  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5:  Collections of file collections and their metadata constraints. 
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In general, for a given site (e.g. Pasadena in California), more than one ruptures are 
used in performing the hazard analysis. According to rupture dynamics of earthquakes 
that depend on hypocenter and slip values, each temporal variation of the stress is 
described in a rupture variation file. That is, rupture variation files for a site is a 
collection of file collections. In our ontology, the concept collection represents both 
simple file collections and nested collections. Each collection should specify the type 
for the collection element using the ‘hasType’ property. There can be constraints 
between a collection and its elements. For example, for a rupture variation collection 
for a rupture, the SourceID and the RuptureID of individual rupture variation file 
should be the same as the rupture’s SourceID and RuptureID. That is, if the rupture 
variation collection for a rupture has SourceID 127 and RuptureID 6, each element (a 
rupture variation file) should have SourceID 127 and RuptureID 6. Figure 5 shows 
how these constraints on collections and nested collections are represented with 
skolem instances. 
 
3.1.3 Constraints on components: constraints on input and output files and 
collections  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

  Figure 6: Constraints on metadata properties of input/output files or collections. 
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results, their values should be the same as the RuptureID and SourceID of the input 
rupture variation collection.  The input SGT collection should have a site name 
associated with it.  Given these inputs, the SeismogramGen component produces a 
seismogram file.  

The metadata for the generated seismogram file depends on the metadata of the 
inputs. In the above example, the site name of the SGT collection (PAS), and the 
SourceID and RuptureID of the RVM file (127 and 6) is propagated to corresponding 
metadata properties of the output seismogram file. The procedure for metadata 
validation and propagation during workflow creation is described in Section 3.2. 
 
3.1.4 Global constraints on templates: constraints among different nodes and 
links 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 7: Global constraints on metadata properties among files and collections used by 
different components in a template 
 
There are additional validation checks that should be made in order to create a valid 
workflow. First of all, the components in the template should use seismic data for the 
same site (e.g. PAS) in performing hazard analysis. In Figure 7, the site name of the 
XYZinput file used in generating a mesh for simulation should be the same as the site 
name of the SGT collection of collections. (We also use a isSameAs property in 
representing equalities of metadata.) In addition, the components should use the same 
number of ruptures throughout the workflow.  For example, the number of elements 
in a collection of collection rupture variations indicates the number of ruptures used in 
modeling the site.  This number (i.e. the number of ruptures) should be the same as 
the number of elements (SGT collections) in the collection of collection SGTs that are 
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used. If the specific number of ruptures is known, the value can be given for the 
N_Ruptures using the flns:hasValue property. Figure 7 shows the current 
representations.  In representing these global constraints, we make use of link 
skolems. Each link skolem is a placeholder for a file or collection that is bound to the 
input and output parameters of the link during workflow creation. When more than 
one link skolems in a template share the same metadata objects, when the bindings for 
the links are created, their corresponding metadata values should be the same. These 
constraints are used by metadata reasoner in creating consistent and correct 
workflows. The details of metadata based validation are described below. 

3.2 Metadata propagation and validation 

Table 1: Steps for propagating metadata and checking constraints during workflow creation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Table 1 shows the procedure for propagating metadata constraints and validating 
workflows created using metadata constraints. The procedure traverses links in the 
workflow template and generates consistent bindings for link skolems. There are three 
classes of links: InputLink, InOutLink, and OutputLink. An InputLink is a link from 
an initial input file or collection to a node. Each InOutLink represents a connection 
from an output parameter of a node to an input parameter of another node. An 
OutputLink represents an end result from a node. The procedure specifies how the 
system starts with the input links of a template, identifies dependencies among the 
links based on definitions of metadata constraints, binds link skolems to files or 
collections, propagates and checks constraints of the bindings based on metadata 
constraints, and traverses the next unbound links based on the dependencies.  

A link l1 is dependent on l2 if some of the metadata of l1 can be filled in based on 
some metadata of l2. For example, in Figure 6, the output of SeismogramGen step 
depends on the RVM file and the SGT collection. The input link for a rupture 

Bind&ValidateWorkflow (WorkflowTemplate wt, InputLinks ILinks)
Assign ILinks to LinksToProcess.
While LinksToProcess is not empty

Remove one from LinksToProcess and assign it to L1.
Let F1 be the link skolem for binding files or collections to L1.
If metadata for F1 should be generated from an execution of a component

if the execution results are not available, continue. ;; exclude this link in the sub-workflow
If any metadata of F1 depends on a link L2 that is not bound yet, mark L1 as a dependent of L2 

and continue.
If L1 is an input link, get metadata of the file from the user or a file server

check consistencies with links that L1 depends on ;; consistency check
check consistencies with existing bindings based on template-level constraints 

;; consistency check
If any metadata are inconsistent, report inconsistency and return. 
Bind file/collection name and metadata to F1.
If the file type for F1 is a collection, recursively get the metadata of its elements

Else (L1 is InOutLink or OuputLink) generate file names and metadata base on the definition of 
the depending links. ;; metadata propagation

For each link L2 that is dependent on l1, if all the links that L2 is depending on are bound,
put L2 in LinksToProcess.

If L1 is an output link, continue.
Else (L1 is InputLink or InOutLink) if all the inputs to the destination node (i.e. the component 

that L1 provides an input to) have been bound, add all the OutputLinks and InOutLinks from 
the destination node to the LinksToProcess.



variation collection depends on the input link for an RVM, if the SourceID and the 
RuptureID of the rupture variations are derived from the values in the RVM file. We 
assume that there are no cyclic dependencies in the definition of metadata constraints.    

The file names and the metadata for initial input files or collections can be given 
from the user or existing file library (in OWL) through a file API. The metadata of the 
initial inputs can also be retrieved from other external file stores using the same API.  
Currently we use a web repository, but we are exploring uses of grid file repositories 
such as MCS (metadata catalog service) [23]. The italicized steps handle sub-
workflows, which are explained in the next section. The Bind&ValidateWorkflow 
procedure can be used in two different modes: an interactive mode where the user can 
enter input file/collection names and metadata in an interactive fashion, or a file 
server mode where the metadata for input files are filled in through file sever calls.  

3.3 Sub-workflows for generating metadata needed for workflow creation 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8: Identifying and executing sub-workflows for full workflow creation. 

In order to minimize uses of manual seam steps in creating workflows, including 
calls to functions that generate file names, we have created new workflow 
components that model such steps. For example, in Figure 8 (an enlargement of 
Figure 2-(a)), individual files in CollOfCollection_SGTCollection1 are unknown 
initially and the file names should be generated by executing the BoxNameCheck 
component. Previously, the execution of BoxNameCheck was done manually. We 
represent such components as workflow components, and link them to the depending 
component inputs or outputs (e.g. SGT files needed by SynthSGT) in the template.  

In generating grid workflows, for each execution of a component, the names of the 
inputs and output files for the component should be specified. That is, what data are 



published, and what data are staged in and out of the computation should be known 
before execution. Often, names or descriptions of some of these files are not given 
initially, and their names should be computationally generated.  

As shown in Table 1, our Bind&ValidateWorkflow procedure checks these 
dependencies, and generates a ‘sub’-workflow that includes only the parts that can be 
instantiated with the currently available data. For the template in Figure 8, a sub-
workflow with bindings for input and output links of the three components 
(XYZGRD, GenMetaForPeakValCal and BoxNameCheck), highlighted with dotted 
lines, is generated. The resulting sub-workflow is mapped to grid resources through 
Pegasus [5] and executed in a grid environment. The execution of a sub-workflow 
provides results for dependent components, such as file names needed for dependent 
components inputs or outputs. The metadata for these new file names are generated 
and added to our file repository by the metadata generator (shown in Figure 3) so that 
they can be used in creating an expanded workflow.  Currently making the results 
available in the file repository is done in a semi-automatic fashion, but we are 
investigating client-server style interaction between workflow creation and execution, 
as described below. The creation and execution of sub-workflows can be performed 
repeatedly until the complete workflow is generated.  The above workflow template 
needs only one iteration of sub-workflow creation and execution. 

4   Results 

Table 2: Number of files and OWL instances created during workflow creation 

 

 

 

 
The above metadata reasoning capabilities are used in creating workflows for 

earthquake hazard analysis. In creating a workflow for an LA site with the template in 
Figure 8, there were about 3,971 ruptures and 97,228 variations of ruptures to take 
into account. As the number of files and file collections become large, many OWL 
objects that represent file and collections and their metadata should be created and 
queried. The number of files in the workflow we have represented was 117,379, as 
shown in Table 2. The number of OWL individuals created was over two million. 
(We excluded the anonymous individuals that are created as a by-product of rdf:list in 
the count, so the actual number is larger.) For the full workflow, the DAX included 
7,945 jobs. Large workflows pose challenges on computational resources (CPUs and 
memory) used during workflow creation. Currently it takes about 8 minutes to create 
a sub workflow and about 23 minutes to generate the full workflow on a Pentium 4 
3.0GHz with 1GB of RAM.  

In order to efficiently perform the required metadata reasoning with many objects, 
we split a workflow into multiple independent workflow parts and create them 
separately. In splitting, we make use of metadata properties that can divide collections 
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into independent sub-collections. For example, separate sub-trees in Figure 2-(b) can 
be independently generated.  We currently use the SourceID to split rupture file 
collections into sub-collections. Other collections such as rupture variation collections 
are divided using the same set of metadata properties. Currently we select such 
metadata properties by hand, but we are investigating an automatic approach that 
takes into account distributions of file collections.  The independent workflow parts 
are accumulated in the workflow generator and are automatically merged in the end, 
creating a complete workflow.  

We make use of the existing Wings capability for saving newly created file objects 
in OWL.  Using the same collection splitting approach described above, we can store 
the resulting files and collections into separate file library entities. The objects can be 
selectively loaded and used in creation of new workflows. Equivalent files or 
collections can be identified using metadata, which enables detection of unnecessary 
execution of components or workflow parts that will produce equivalent datasets. 

5   Related Work 

Semantic web techniques have been used in supporting many e-science workflow 
systems [10, 7]. Applications include semantic description of web services, resource 
discovery, data management, composition of workflow templates [18, 21, 24, 1], etc. 
Our work complements existing work by supporting creation of large workflows 
needed for data and/or compute intensive scientific computations.  

Recently various data management and provenance techniques have been 
developed for e-Science applications [22,8]. Most of the existing work focuses on 
pedigree or lineage metadata that describes the data resources and the processes used 
in generating data products.  These provenance metadata are often used in qualifying 
data products and supporting data management and reuse. Our current work focuses 
metadata on data content that support identification of consistent file collections used 
in workflow creation. The newly created metadata on file content can be used in 
combination of other provenance metadata in supporting file reuse. Our work extends 
existing approaches for validating workflows in that we take into account constraints 
on nested collections and global constraints among multiple components as well as 
constraints on inputs within individual components [27,15]. Another difference is that 
we make use of metadata in generating valid workflows before execution instead of 
validating already executed workflows with provenance data, enabling detection of 
unnecessary jobs before execution. 

5   Conclusion and Future Work 

We presented a semantic metadata generation and reasoning approach that supports 
creation of large workflows. Given the metadata of initial input files, the system 
propagates metadata constraints from the inputs to the outputs, and through the links 
among the components during workflow creation. Both global constraints among 
multiple components and local constraints are used for workflow validation. The files 



that will be produced from workflow execution as well as the input files are identified 
during the metadata propagation and validation process. Some of the metadata are 
generated through creation and execution of sub-workflows when the metadata need 
to be computationally generated. Because we are able to identify data collections and 
their properties before the workflow is executed, we can detect whether the data has 
been generated before by querying an existing data repository.  This is important for 
optimizing execution performance: If some intermediate data product already exists 
then there is no need to re-execute the portion of the workflow that produces it.  We 
also use the metadata in managing large collections and their provenance. 

 We are currently working on extensions of the workflow template shown in 
Figure 2-(a) and they will use more datasets for seismic analysis of different sites in 
Southern California. In order to further improve the efficiency of the workflow 
creation and metadata reasoning, we are considering several extensions to our system. 
First of all, we are working on a database backend for storing metadata for many files 
and collections. Currently we can store them in multiple owl files, but we are 
planning to explore uses of MCS that can store metadata of data products (such as 
files) published on the Grid [23].  With this approach, when there are new files and 
metadata added to MCS by a different client, we will be able to use them in creating 
new workflows.  In order to perform iterative sub-workflow generation and 
execution more efficiently, we are investigating a client-server style approach where 
our system can call a workflow execution server with a newly generated sub-
workflow, and the execution results can be notified to our system (a client). The 
newly generated metadata during workflow creation can be used in combination with 
other metadata for data provenance applications. For example, the metadata can tell 
whether the two files (or collections) contain the same kind of information, even 
when they are generated from different workflows. We are exploring various uses of 
metadata in relating datasets used in scientific workflows.  
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