
Semantic Metadata Generation for Large Scientific
Workflows

Jihie Kim1, Yolanda Gil1, and Varun Ratnakar 1,

1 Information Sciences Institute, University of Southern California
4676 Admiralty Way, Marina del Rey CA 90292, United States

{jihie, gil, varunr}@isi.edu

Abstract. In recent years, workflows have been increasingly used in scientific
applications. This paper presents novel metadata reasoning capabilities that we
have developed to support the creation of large workflows. They include 1) use
of semantic web technologies in handling metadata constraints on file
collections and nested file collections, 2) propagation and validation of
metadata constraints from inputs to outputs in a workflow component, and
through the links among components in a workflow, and 3) sub-workflows that
generate metadata needed for workflow creation. We show how we used
these capabilities to support the creation of large workflows in an earthquake
science application.

Keywords: metadata reasoning, workflow generation, grid workflows.

1 Introduction

Scientists have growing needs to use computational workflows that address different
aspects of the phenomenon under study [14, 5, 2, 28]. In recent years, uses of large
workflows have been significantly increased. Often they adopt grid-based
environments that enable efficient execution of large workflows by making use of
distributed shared resources [26,17]. In such cases, computations in scientific
workflows are represented as grid jobs that describe components used, input files
required, and output files that will be produced in distributed environment [4].

Metadata describe the data products used and generated by workflow components.
Semantic web techniques have been applied for metadata reasoning on workflows
such as validation of input parameters based on provenance data using component
semantics [27], representing and managing dependencies between data products [15],
helping scientists relate and annotate data and services through ontology-based
generation and management of provenance data [29], etc. However, most of the
existing metadata reasoning approaches focus on analyses of provenance data that are
created from execution [22] rather than generation of input and output file
descriptions needed in the workflow before execution.

The metadata reasoning capabilities of existing systems focus on files and simple
collections and cannot effectively handle constraints on nested collections. Existing
checks on files are limited to validation of inputs for individual components. However,

often there are global constraints on inputs and outputs of multiple components, and
the workflow should be validated against such constraints in order to prevent
execution of invalid workflows and wasting of expensive computations.
Unnecessary execution of individual components or multiple components in the given
workflow should be detected and avoided when datasets that are equivalent to the
ones to be produced exist.

The creation of such large workflows requires several metadata reasoning
capabilities:

• Keeping track of constraints on datasets used (i.e. files and file collections),
including global constraints among multiple components as well as local
constraints within individual components.

• Identifying datasets that are used and produced by the workflow efficiently.
• Detecting equivalent datasets and prevent unnecessary execution of workflow

parts when datasets already exist.
• Managing large datasets and their provenance.

This paper presents novel metadata reasoning capabilities that we have developed
to support the creation of large workflows. They include 1) use of semantic web
technologies in handling metadata constraints on file collections and nested file
collections, 2) propagation and validation of metadata constraints from inputs to
outputs in a workflow component, and through the links among components in a
workflow, and 3) sub-workflows that generate metadata needed for workflow creation.
We show how we used these capabilities to support the creation of large workflows in
an earthquake science application.

2 Motivation

A computational workflow is a set of executable programs (called components) that
are introduced and linked together to pass data products to each other. The purpose
of a computational workflow is to produce a desired end result from the combined
computation of the programs. We will call a computational workflow as a workflow
in this paper for brevity. Whereas a workflow represents a flow of data products
among executable components, a workflow template is an abstract specification of a
workflow, with a set of nodes and links where each node is a placeholder for a
component or component collections (for iterative execution of the program over file
collections), and each link represents how the input and output parameters are
connected. For example, Figure 1-(a) shows a template that has been used by
earthquake scientists in SCEC (Southern California Earthquake Center) in Fall 2005.
The template has two nodes (seismogram generation and calculation of spectral
accelerations), each one containing a component collection. The workflow created
from the template is shown in Figure 1-(b). This workflow has been used in
estimating hazard level of a site with respect to spectral acceleration caused by
ruptures and their variations over time.

Figure 1: Workflow creation for seismic hazard analysis in Fall 2005.

Figure 2: Workflow creation for seismic hazard analysis in Spring 2006.

The workflow was generated from manually created scripts that specify how to

bind files to input parameters of the components and what are the expected output file
names. An important feature of the workflow is that their data products are stored in
files, often organized in directory structures that reflect the structure of the
workflows. The names of the files and the directories follow conventions to encode

(a) Workflow template

PeakValCal

SynthSGT

127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000

Seismograms_PAS_127_6.grm

SeismMeta_127_6

PeakVals_allPAS_127_6.bsa

SGT_127_6a

BoxNameCheck

127_6.rvm

SRL127_6

GenMetaForPVC

SeisVals

SGTFileDesc127_6

PeakValCal

SynthSGT

127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000
127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000

Seismograms_PAS_127_6.grmSeismograms_PAS_127_6.grm

SeismMeta_127_6SeismMeta_127_6

PeakVals_allPAS_127_6.bsaPeakVals_allPAS_127_6.bsa

SGT_127_6aSGT_127_6aSGT_127_6a

BoxNameCheck

127_6.rvm

SRL127_6

GenMetaForPVC

SeisVals
127_6.rvm127_6.rvm

SRL127_6SRL127_6

GenMetaForPVC

SeisValsSeisVals

SGTFileDesc127_6SGTFileDesc127_6

XYZGRD

GRD

GRDIn

XYZGRD

GRDGRD

GRDInGRDIn

PeakValCal

SynthSGT

127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000

Seismograms_PAS_127_6.grm

SeismMeta_127_6

PeakVals_allPAS_127_6.bsa

SGT_127_6a

BoxNameCheck

127_6.rvm

SRL127_6

GenMetaForPVC

SeisVals

SGTFileDesc127_6

PeakValCal

SynthSGT

127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000
127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000

Seismograms_PAS_127_6.grmSeismograms_PAS_127_6.grm

SeismMeta_127_6SeismMeta_127_6

PeakVals_allPAS_127_6.bsaPeakVals_allPAS_127_6.bsa

SGT_127_6aSGT_127_6aSGT_127_6a

BoxNameCheck

127_6.rvm

SRL127_6

GenMetaForPVC

SeisVals
127_6.rvm127_6.rvm

SRL127_6SRL127_6

GenMetaForPVC

SeisValsSeisVals

SGTFileDesc127_6SGTFileDesc127_6

PeakValCal

SynthSGT

127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000

Seismograms_PAS_127_6.grm

SeismMeta_127_6

PeakVals_allPAS_127_6.bsa

SGT_127_6a

BoxNameCheck

127_6.rvm

SRL127_6

GenMetaForPVC

SeisVals

SGTFileDesc127_6

PeakValCal

SynthSGT

127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000
127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000

Seismograms_PAS_127_6.grmSeismograms_PAS_127_6.grm

SeismMeta_127_6SeismMeta_127_6

PeakVals_allPAS_127_6.bsaPeakVals_allPAS_127_6.bsa

SGT_127_6aSGT_127_6aSGT_127_6a

BoxNameCheck

127_6.rvm

SRL127_6

GenMetaForPVC

SeisVals
127_6.rvm127_6.rvm

SRL127_6SRL127_6

GenMetaForPVC

SeisValsSeisVals

SGTFileDesc127_6SGTFileDesc127_6

…

3971 independent instances for each rupture, >100,000 variations for a site

(b) Workflow

(a) Workflow template (b) Workflow

PeakValCal

SynthSGT

127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000
127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000

127_6.rvm127_6.rvm

Seismograms_PAS_127_6.grmSeismograms_PAS_127_6.grm

SeismMeta_127_6SeismMeta_127_6

PeakVals_allPAS_127_6.bsaPeakVals_allPAS_127_6.bsa

PeakValCal

SynthSGT

127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000

127_6.rvm

Seismograms_PAS_127_6.grm

SeismMeta_127_6

PeakVals_allPAS_127_6.bsa

PeakValCal

SynthSGT

127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000
127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000

127_6.rvm127_6.rvm

Seismograms_PAS_127_6.grmSeismograms_PAS_127_6.grm

SeismMeta_127_6SeismMeta_127_6

PeakVals_allPAS_127_6.bsaPeakVals_allPAS_127_6.bsa

PeakValCal

SynthSGT

127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000

127_6.rvm

Seismograms_PAS_127_6.grm

SeismMeta_127_6

PeakVals_allPAS_127_6.bsa

PeakValCal

SynthSGT

127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000
127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000

127_6.rvm127_6.rvm

Seismograms_PAS_127_6.grmSeismograms_PAS_127_6.grm

SeismMeta_127_6SeismMeta_127_6

PeakVals_allPAS_127_6.bsaPeakVals_allPAS_127_6.bsa

…

metadata information in the names such as the creation date or the relative area
covered by the analysis. Therefore, the scripts that generate the workflow must
orchestrate the creation of very particular data identifiers, namely file names that
comply with those conventions and are instantiated to the appropriate constants. For
example, a file containing the points for a hazard curve would be named using
the rupture id and the fault id that were used in the simulation of the wave, as well as
the lat-long of the location for the curve. The script included calls to functions or
other scripts that generate information needed by the workflow (e.g. seismic
parameter values). These manual ‘seam’ steps were not a part of the workflow. Most
of the checks on the files and the collections were done by hand.

Figure 2-(a) shows an extension in the template in Spring 2006. This extension
was needed to include strain green tensors (SGTs) as additional data input for
seismogram generation. As the workflow template and descriptions of components
become more complex, the script based approach became infeasible. First of all,
there are more manual seam steps to handle. For example, since the SGT files that
should be used in the workflow are unknown, the function that generates appropriate
SGT file names should be executed beforehand. Validation of the workflow requires
more checks. For example, now we need to check whether the SGTs use in generating
seismogram are consistent with the rupture variations used for calculating peak values.
If the seismogram generation step uses ruptures for Pasadena and their corresponding
SGTs but the peak value calculation uses a rupture variation map for LA, the
execution of the workflow will fail. When there exists a dataset that is equivalent to
the expected output from executions of some components (e.g. SGT name datasets
for Pasadena already exist), scientists could not easily identify them.

In summary, generation of large workflows for this type of applications requires
flexibility in adding or changing components to the template, systematic identification
of files that are needed and generated by the workflow, incorporation of manual
‘seam’ steps into the workflow (making them a part of the workflow), and automatic
validation of files and collections that are used in the workflow.

3 Approach

In developing new metadata reasoning capabilities for workflow creation, we use a
workflow creation framework called Wings [6]. Wings takes a workflow template and
initial input file descriptions, and creates an abstract grid workflow called DAX
(DAG XML description). A DAX is transformed into an executable concrete
workflow through a mapping that assigns available grid resources for execution by
Pegasus [4]. Wings uses OWL-DL for representing files and collections, components,
workflow templates, and workflows [6]. Currently Jena supports the reasoning.

In this work, Wings was extended to support metadata reasoning and generation.
In order to support the above metadata reasoning capabilities, we have developed an
approach for representing metadata constraints on files and collections, and a
supporting metadata reasoner. Figure 3 highlights the parts that support metadata
reasoning capabilities. We are going to describe each in the following subsections.
Although the descriptions rely on earthquake science examples, the same approach is
used for other applications [6].

 Figure 3: Metadata reasoning for workflow creation

3.1 Representing metadata constraints

In creating workflows, the system needs to keep track of constraints on individual
files, constraints on collections and their elements, constraints on inputs and outputs
of each component, and global constraints among multiple components.

3.1.1 Metadata constraints on individual files

 Figure 4: Metadata constraints on individual files

OWL ontologies

CC-Rup-Vars-View

C-Rup-Vars-for-Rup-ViewC-Rup-Vars-for-Rup-ViewC-Rup-Vars-for-Rup-View

O
nt

ol
og

y
A

PI
fil

e
A

PI

127_6.txt.variation-s0000-h0001
- source_id: 127
- rupture_id: 6
- slip_realization_#:0
- hypo_center_#: 1

127_6.txt.variation-s0000-h0001
- source_id: 127
- rupture_id: 6
- slip_realization_#:0
- hypo_center_#: 1

127_6.txt.variation-s0000-h0001
- source_id: 127
- rupture_id: 6
- slip_realization_#:0
- hypo_center_#: 1

127_6.txt.variation-s0000-h0001
- source_id: 127
- rupture_id: 6
- slip_realization_#:0
- hypo_center_#: 1

127_6.txt.variation-s0000-h0001
- source_id: 127
- rupture_id: 6
- slip_realization_#:0
- hypo_center_#: 1

127_6.txt.variation-s0000-h0001
- source_id: 127
- rupture_id: 6
- slip_realization_#:0
- hypo_center_#: 1

…

Wings File Ont
Wings Component Ont

Domain component Ont

Workflow templates

CC-Rup-Vars

C-Rup-Vars-for-Rup

File Library

Domain File Ont

…

Metadata
constraints

Metadata
Reasoner

F-RV1F-RV1F-RV1F-RV1

•current wf instance
•logical files used
•bindings
•new file objects &

metadata created

Workflow
Generator

Workflows

External File /Metadata Store

User

Metadata
generator

RuptureVarFile

Int

Metadata:4DigitInt

hasSourceID
hasRuptureID

hasSlipRealizationN
hasHypoCenterN

File

xsd:int

flns:hasValue
hasMetadata MetadataMetadata

RuptureVarFile_Skolem_SlipRealizationNum

hasInitialValue
00

…hasSourceID
hasRuptureID

usedAs

Domain
independent
definitions

Domain
dependent
definitions

: classes

: instances

: properties
Constraints on value types

<RuptureVariationFile rdf:ID="RuptureVarFile_Skolem"> <rdf:type rdf:resource="&flns;FileSkolem"/>
<hasRuptureID rdf:resource="#RuptureVarFile_Skolem_RuptureID"/>
<hasSlipRealizationNumber rdf:resource="#RuptureVarFile_Skolem_SlipRealizationNum"/>

…</RuptureVariationFile>
<flns:Int rdf:ID=“RuptureVariationFile_Skolem_RuptureID“/>
<FourDigitInt rdf:ID="RuptureVarFile_Skolem_SlipRealizationNum"> <flns:hasInitialValue

rdf:datatype="&xsd;int">0</flns:hasInitialValue> …</FourDigitInt>
…

: instance of

: subclass of

Skolem
instance
definitionsRupVarFile_SkolemRupVarFile_Skolem

flns contains domain
independent
definitions on files
and collections
scecflns contains
domain dependent
definitions on files
and collections

hasSlipRealizationN

RuptureVarFile_Skolem_HypoCenterNum

RuptureVarFile_Skolem_RuptureID

RuptureVarFile_Skolem_SourceID

hasHypoCenterN

flns:hasIntValue

…

Each file class can have one or more metadata properties associated with it. In
representing metadata constraints of a file class, we use a skolem instance (e.g.,
RupVarFile_Skolem) that represents prototypical instances of the class. The metadata
can describe what the file contains, how it was generated, how it can be used, etc. For
example, a rupture variation file can have Ruptupre ID, SourceID, SlipRelaizationN,
and HypoCenterN that represent what it contains. Each metadata property has value
ranges and can have some initial values. Other constraints such as how to derive
filenames from metadata can be represented using the skolem instance. The actual
metadata property values of file instances can be used in checking constraints on input
and output files/collections used in the workflow, as described below.

3.1.2 Handling constraints on nested collections

Figure 5: Collections of file collections and their metadata constraints.

hasType

Rupture
Variations

CollOf
Collection

FileCollection
hasType FileFile

hasType

RuptureVarsFor
ForRupture

RuptureVarFilehasType

hasSiteName

Metadata:String

hasType

hasSourceID

Metadata:IntMetadata:Int

hasSourceID

hasRuptureID

hasSiteName SiteName1

hasSiteName
SourceID1hasSourceID

hasRuptureID

RuptureID1

Constraints on collection element types

metadata constraints on collections & their elements

…

hasRuptureID

<owl:Class rdf:ID="CollOfCollection"> <rdfs:subClassOf rdf:resource="#Collection"/> </owl:Class>
<owl:Class rdf:ID="FileCollection"> <rdfs:subClassOf rdf:resource="#Collection"/> </owl:Class>

<owl:Class rdf:ID="RuptureVariations"> <rdfs:subClassOf rdf:resource="&flns;CollOfCollection"/>
<rdfs:subClassOf> <owl:Restriction> <owl:onProperty rdf:resource="&flns;hasType"/> <owl:allValuesFrom
rdf:resource="#RuptureVariationsforRupture"/> </owl:Restriction> </rdfs:subClassOf> </owl:Class>

<owl:Class rdf:ID="RuptureVariationsforRupture"> <rdfs:subClassOf> <owl:Restriction> <owl:onProperty
rdf:resource="&flns;hasType"/> <owl:allValuesFrom rdf:resource="#RuptureVariationFile"/>
</owl:Restriction> </rdfs:subClassOf> <rdfs:subClassOf rdf:resource="&flns;FileCollection"/> </owl:Class>

<scecflns:RuptureVariationsforRupture rdf:ID="BNCI_RuptureVariationsforRupture"> <scecflns:hasSourceID
rdf:resource="#BNCI_SourceID"/> <flns:hasFileType rdf:resource="#BNCI_RuptureVariationFile"/>
<scecflns:hasRuptureID rdf:resource="#BNCI_RuptureID"/> </scecflns:RuptureVariationsforRupture>

<scecflns:RuptureVariationFile rdf:ID="BNCI_RuptureVariationFile">
<scecflns:hasSourceID rdf:resource="#BNCI_SourceID"/>
<scecflns:hasRuptureID rdf:resource="#BNCI_RuptureID"/> </scecflns:RuptureVariationFile>

CC-RuptureVariations-Skolem

C-RupVars-Skolem

RupVar-Skolem

hasType

hasType

hasItems
CollectionListCollectionList FileListFileListhasItems

…
CC-Rup-Vars-for-Pasadena

C-Rup-Vars-for-Rup_127_6

C-Rup-Vars-for-Rup_127_7

C-Rup-Vars-for-Rup_150_11

hasItems

Domain
independent
definitions

Domain
dependent
definitions

Skolem
instance
definitions

hasItems 127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000

127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_7.txt.variation-s0000-h0001127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_7.txt.variation-s0000-h0001

127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000150_11.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000150_11.txt.variation-s0000-h0000

…

hasItems

hasItems

example
files and
collections

…

In general, for a given site (e.g. Pasadena in California), more than one ruptures are
used in performing the hazard analysis. According to rupture dynamics of earthquakes
that depend on hypocenter and slip values, each temporal variation of the stress is
described in a rupture variation file. That is, rupture variation files for a site is a
collection of file collections. In our ontology, the concept collection represents both
simple file collections and nested collections. Each collection should specify the type
for the collection element using the ‘hasType’ property. There can be constraints
between a collection and its elements. For example, for a rupture variation collection
for a rupture, the SourceID and the RuptureID of individual rupture variation file
should be the same as the rupture’s SourceID and RuptureID. That is, if the rupture
variation collection for a rupture has SourceID 127 and RuptureID 6, each element (a
rupture variation file) should have SourceID 127 and RuptureID 6. Figure 5 shows
how these constraints on collections and nested collections are represented with
skolem instances.

3.1.3 Constraints on components: constraints on input and output files and
collections

 Figure 6: Constraints on metadata properties of input/output files or collections.

Each workflow component is described in terms of its input and output data types. In
Figure 6, the SeismogramGen component has three inputs: an RVM (rupture variation
map) file, a rupture variation collection, and a SGT file collection. Each RVM file has
a SourceID and a RuptureID of the rupture that it represents. In order to create valid

SeismogramGen

Component
Type

Component
Type

hasInputs FileOrCollection
ListhasOutputs

hasInputs

SeismogramGen_InputsSeismogramGen_Inputs

SeismogramGen_OutputsSeismogramGen_Outputs

hasOutputs

hasSourceID

RVM_SourceID1

RVM_RuptureID1
hasRuptureID

hasSiteName SGTsSiteName1

metadata constraints on
input and output files

Constraints on the types of input and output file and collections

…

…

…

e.g. 127_6.rvm

e.g. a rup var collection
sourceID 127 and rupID 6

e.g. SGT collection
for PAS

e.g. PeakVals_PAS_127_6.bsa

<scecflns:RVMFile rdf:ID="SynthSGTInput_RVM"> <scecflns:hasSourceID
rdf:resource="#SynthSGTInput_RVM_SourceID1"/> <scecflns:hasRuptureID
rdf:resource="#SynthSGTInput_RVM_RuptureID1"/> </scecflns:RuptureVariationMetadataFile>

<scecflns:SGTCollectionforRupture rdf:ID="SynthSGTInput_SGTCollectionforRupture">
…<scecflns:hasSiteName rdf:resource="#SynthSGTInput_SGTCollectionforRupture_SiteName1"/>
<flns:hasFileType rdf:resource="#SynthSGTInput_SGTFile1"/></scecflns:SGTCollectionforRupture>

<scecflns:SeismogramFile rdf:ID="SynthSGTOutput_SeismogramFile"> <scecflns:hasSourceID
rdf:resource="#SynthSGTInput_RVM_SourceID1"/> <scecflns:hasRuptureID
rdf:resource="#SynthSGTInput_RVM_RuptureID1"/> <scecflns:hasSiteName
rdf:resource="#SynthSGTInput_SGTCollectionforRupture_SiteName1"/> </scecflns:SeismogramFile>

SeismogramGen_Skolem

RVM-1

C-RupVars-1

C-SGT-1

Seismogram-1

results, their values should be the same as the RuptureID and SourceID of the input
rupture variation collection. The input SGT collection should have a site name
associated with it. Given these inputs, the SeismogramGen component produces a
seismogram file.

The metadata for the generated seismogram file depends on the metadata of the
inputs. In the above example, the site name of the SGT collection (PAS), and the
SourceID and RuptureID of the RVM file (127 and 6) is propagated to corresponding
metadata properties of the output seismogram file. The procedure for metadata
validation and propagation during workflow creation is described in Section 3.2.

3.1.4 Global constraints on templates: constraints among different nodes and
links

Figure 7: Global constraints on metadata properties among files and collections used by
different components in a template

There are additional validation checks that should be made in order to create a valid
workflow. First of all, the components in the template should use seismic data for the
same site (e.g. PAS) in performing hazard analysis. In Figure 7, the site name of the
XYZinput file used in generating a mesh for simulation should be the same as the site
name of the SGT collection of collections. (We also use a isSameAs property in
representing equalities of metadata.) In addition, the components should use the same
number of ruptures throughout the workflow. For example, the number of elements
in a collection of collection rupture variations indicates the number of ruptures used in
modeling the site. This number (i.e. the number of ruptures) should be the same as
the number of elements (SGT collections) in the collection of collection SGTs that are

HazardAnalysis
Template1

InputLink_XYZInputFi
le_to_XYZGRD hasSiteName

InputLink_RuptureVars
_to_SeisgmogramGen

hasLink

InputLink_SGTCollforRu
p_to_SeismogramGen

hasFile

hasFile

hasFile

hasSiteName SiteName1

N_Ruptures
hasN_Items

hasN_Items

…

…

Constraints on number of elements in different collections

metadata constraints on
files/collections of different components

<scecflns:XYZInputFile rdf:ID="XYZInputFile_1"> <scecflns:hasSiteName rdf:resource="#SiteName_1"/>
</scecflns:XYZInputFile>

<scecflns:SGTCollection rdf:ID="CollOfCollection_SGTCollection1"> <scecflns:hasSiteName
rdf:resource="#SiteName_1"/> <flns:hasN_items rdf:resource="#N_Ruptures"/> <flns:hasCollectionType
rdf:resource="&scecclns;SynthSGTInput_SGTCollectionforRupture"/> <flns:hasDescriptionFile
rdf:resource="#FileCollection_SGTFileDescriptions1"/> </scecflns:SGTCollection>

<scecflns:RuptureVariations rdf:ID="CollOfCollection_RuptureVariations1"> <scecflns:hasSiteName
rdf:datatype="&xsd;string"></scecflns:hasSiteName> <flns:hasN_items rdf:resource="#N_Ruptures"/>
<flns:hasCollectionType rdf:resource="#RuptureVariationsforRupture_1"/> </scecflns:RuptureVariations>

XYZInputFile1

CollOfCollection
_SGTCollection1

CollOfCollection_
RuptureVariations1

used. If the specific number of ruptures is known, the value can be given for the
N_Ruptures using the flns:hasValue property. Figure 7 shows the current
representations. In representing these global constraints, we make use of link
skolems. Each link skolem is a placeholder for a file or collection that is bound to the
input and output parameters of the link during workflow creation. When more than
one link skolems in a template share the same metadata objects, when the bindings for
the links are created, their corresponding metadata values should be the same. These
constraints are used by metadata reasoner in creating consistent and correct
workflows. The details of metadata based validation are described below.

3.2 Metadata propagation and validation

Table 1: Steps for propagating metadata and checking constraints during workflow creation.

Table 1 shows the procedure for propagating metadata constraints and validating
workflows created using metadata constraints. The procedure traverses links in the
workflow template and generates consistent bindings for link skolems. There are three
classes of links: InputLink, InOutLink, and OutputLink. An InputLink is a link from
an initial input file or collection to a node. Each InOutLink represents a connection
from an output parameter of a node to an input parameter of another node. An
OutputLink represents an end result from a node. The procedure specifies how the
system starts with the input links of a template, identifies dependencies among the
links based on definitions of metadata constraints, binds link skolems to files or
collections, propagates and checks constraints of the bindings based on metadata
constraints, and traverses the next unbound links based on the dependencies.

A link l1 is dependent on l2 if some of the metadata of l1 can be filled in based on
some metadata of l2. For example, in Figure 6, the output of SeismogramGen step
depends on the RVM file and the SGT collection. The input link for a rupture

Bind&ValidateWorkflow (WorkflowTemplate wt, InputLinks ILinks)
Assign ILinks to LinksToProcess.
While LinksToProcess is not empty

Remove one from LinksToProcess and assign it to L1.
Let F1 be the link skolem for binding files or collections to L1.
If metadata for F1 should be generated from an execution of a component

if the execution results are not available, continue. ;; exclude this link in the sub-workflow
If any metadata of F1 depends on a link L2 that is not bound yet, mark L1 as a dependent of L2

and continue.
If L1 is an input link, get metadata of the file from the user or a file server

check consistencies with links that L1 depends on ;; consistency check
check consistencies with existing bindings based on template-level constraints

;; consistency check
If any metadata are inconsistent, report inconsistency and return.
Bind file/collection name and metadata to F1.
If the file type for F1 is a collection, recursively get the metadata of its elements

Else (L1 is InOutLink or OuputLink) generate file names and metadata base on the definition of
the depending links. ;; metadata propagation

For each link L2 that is dependent on l1, if all the links that L2 is depending on are bound,
put L2 in LinksToProcess.

If L1 is an output link, continue.
Else (L1 is InputLink or InOutLink) if all the inputs to the destination node (i.e. the component

that L1 provides an input to) have been bound, add all the OutputLinks and InOutLinks from
the destination node to the LinksToProcess.

variation collection depends on the input link for an RVM, if the SourceID and the
RuptureID of the rupture variations are derived from the values in the RVM file. We
assume that there are no cyclic dependencies in the definition of metadata constraints.

The file names and the metadata for initial input files or collections can be given
from the user or existing file library (in OWL) through a file API. The metadata of the
initial inputs can also be retrieved from other external file stores using the same API.
Currently we use a web repository, but we are exploring uses of grid file repositories
such as MCS (metadata catalog service) [23]. The italicized steps handle sub-
workflows, which are explained in the next section. The Bind&ValidateWorkflow
procedure can be used in two different modes: an interactive mode where the user can
enter input file/collection names and metadata in an interactive fashion, or a file
server mode where the metadata for input files are filled in through file sever calls.

3.3 Sub-workflows for generating metadata needed for workflow creation

Figure 8: Identifying and executing sub-workflows for full workflow creation.

In order to minimize uses of manual seam steps in creating workflows, including
calls to functions that generate file names, we have created new workflow
components that model such steps. For example, in Figure 8 (an enlargement of
Figure 2-(a)), individual files in CollOfCollection_SGTCollection1 are unknown
initially and the file names should be generated by executing the BoxNameCheck
component. Previously, the execution of BoxNameCheck was done manually. We
represent such components as workflow components, and link them to the depending
component inputs or outputs (e.g. SGT files needed by SynthSGT) in the template.

In generating grid workflows, for each execution of a component, the names of the
inputs and output files for the component should be specified. That is, what data are

published, and what data are staged in and out of the computation should be known
before execution. Often, names or descriptions of some of these files are not given
initially, and their names should be computationally generated.

As shown in Table 1, our Bind&ValidateWorkflow procedure checks these
dependencies, and generates a ‘sub’-workflow that includes only the parts that can be
instantiated with the currently available data. For the template in Figure 8, a sub-
workflow with bindings for input and output links of the three components
(XYZGRD, GenMetaForPeakValCal and BoxNameCheck), highlighted with dotted
lines, is generated. The resulting sub-workflow is mapped to grid resources through
Pegasus [5] and executed in a grid environment. The execution of a sub-workflow
provides results for dependent components, such as file names needed for dependent
components inputs or outputs. The metadata for these new file names are generated
and added to our file repository by the metadata generator (shown in Figure 3) so that
they can be used in creating an expanded workflow. Currently making the results
available in the file repository is done in a semi-automatic fashion, but we are
investigating client-server style interaction between workflow creation and execution,
as described below. The creation and execution of sub-workflows can be performed
repeatedly until the complete workflow is generated. The above workflow template
needs only one iteration of sub-workflow creation and execution.

4 Results

Table 2: Number of files and OWL instances created during workflow creation

The above metadata reasoning capabilities are used in creating workflows for

earthquake hazard analysis. In creating a workflow for an LA site with the template in
Figure 8, there were about 3,971 ruptures and 97,228 variations of ruptures to take
into account. As the number of files and file collections become large, many OWL
objects that represent file and collections and their metadata should be created and
queried. The number of files in the workflow we have represented was 117,379, as
shown in Table 2. The number of OWL individuals created was over two million.
(We excluded the anonymous individuals that are created as a by-product of rdf:list in
the count, so the actual number is larger.) For the full workflow, the DAX included
7,945 jobs. Large workflows pose challenges on computational resources (CPUs and
memory) used during workflow creation. Currently it takes about 8 minutes to create
a sub workflow and about 23 minutes to generate the full workflow on a Pentium 4
3.0GHz with 1GB of RAM.

In order to efficiently perform the required metadata reasoning with many objects,
we split a workflow into multiple independent workflow parts and create them
separately. In splitting, we make use of metadata properties that can divide collections

2,001,972

322,473

Number of OWL
individuals created

117,379

15,888

Number of file instances
created for the workflow

Workflow creation time

22 minutes, 52 seconds

7 minutes,
59 seconds

A full workflow for
hazard analysis

A sub workflow for
hazard analysis

2,001,972

322,473

Number of OWL
individuals created

117,379

15,888

Number of file instances
created for the workflow

Workflow creation time

22 minutes, 52 seconds

7 minutes,
59 seconds

A full workflow for
hazard analysis

A sub workflow for
hazard analysis

into independent sub-collections. For example, separate sub-trees in Figure 2-(b) can
be independently generated. We currently use the SourceID to split rupture file
collections into sub-collections. Other collections such as rupture variation collections
are divided using the same set of metadata properties. Currently we select such
metadata properties by hand, but we are investigating an automatic approach that
takes into account distributions of file collections. The independent workflow parts
are accumulated in the workflow generator and are automatically merged in the end,
creating a complete workflow.

We make use of the existing Wings capability for saving newly created file objects
in OWL. Using the same collection splitting approach described above, we can store
the resulting files and collections into separate file library entities. The objects can be
selectively loaded and used in creation of new workflows. Equivalent files or
collections can be identified using metadata, which enables detection of unnecessary
execution of components or workflow parts that will produce equivalent datasets.

5 Related Work

Semantic web techniques have been used in supporting many e-science workflow
systems [10, 7]. Applications include semantic description of web services, resource
discovery, data management, composition of workflow templates [18, 21, 24, 1], etc.
Our work complements existing work by supporting creation of large workflows
needed for data and/or compute intensive scientific computations.

Recently various data management and provenance techniques have been
developed for e-Science applications [22,8]. Most of the existing work focuses on
pedigree or lineage metadata that describes the data resources and the processes used
in generating data products. These provenance metadata are often used in qualifying
data products and supporting data management and reuse. Our current work focuses
metadata on data content that support identification of consistent file collections used
in workflow creation. The newly created metadata on file content can be used in
combination of other provenance metadata in supporting file reuse. Our work extends
existing approaches for validating workflows in that we take into account constraints
on nested collections and global constraints among multiple components as well as
constraints on inputs within individual components [27,15]. Another difference is that
we make use of metadata in generating valid workflows before execution instead of
validating already executed workflows with provenance data, enabling detection of
unnecessary jobs before execution.

5 Conclusion and Future Work

We presented a semantic metadata generation and reasoning approach that supports
creation of large workflows. Given the metadata of initial input files, the system
propagates metadata constraints from the inputs to the outputs, and through the links
among the components during workflow creation. Both global constraints among
multiple components and local constraints are used for workflow validation. The files

that will be produced from workflow execution as well as the input files are identified
during the metadata propagation and validation process. Some of the metadata are
generated through creation and execution of sub-workflows when the metadata need
to be computationally generated. Because we are able to identify data collections and
their properties before the workflow is executed, we can detect whether the data has
been generated before by querying an existing data repository. This is important for
optimizing execution performance: If some intermediate data product already exists
then there is no need to re-execute the portion of the workflow that produces it. We
also use the metadata in managing large collections and their provenance.

 We are currently working on extensions of the workflow template shown in
Figure 2-(a) and they will use more datasets for seismic analysis of different sites in
Southern California. In order to further improve the efficiency of the workflow
creation and metadata reasoning, we are considering several extensions to our system.
First of all, we are working on a database backend for storing metadata for many files
and collections. Currently we can store them in multiple owl files, but we are
planning to explore uses of MCS that can store metadata of data products (such as
files) published on the Grid [23]. With this approach, when there are new files and
metadata added to MCS by a different client, we will be able to use them in creating
new workflows. In order to perform iterative sub-workflow generation and
execution more efficiently, we are investigating a client-server style approach where
our system can call a workflow execution server with a newly generated sub-
workflow, and the execution results can be notified to our system (a client). The
newly generated metadata during workflow creation can be used in combination with
other metadata for data provenance applications. For example, the metadata can tell
whether the two files (or collections) contain the same kind of information, even
when they are generated from different workflows. We are exploring various uses of
metadata in relating datasets used in scientific workflows.

Acknowledgments. We thank Philip Maechling, Scott Callaghan, Hunter Francoeur,
and Li Zhao in the Southern California Earthquake Center (SCEC) for valuable
discussions on large workflows. We would also like to thank Gaurang Mehta and
Ewa Deelman for their help in executing workflows with Pegasus. This research
was supported by the Southern California Earthquake Center. SCEC is funded by
NSF Cooperative Agreement EAR-0106924 and USGS Cooperative Agreement
02HQAG0008. The SCEC contribution number for this paper is 1016.

References

1. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludäscher, B., Mock, S.: Kepler: Towards a
Grid-Enabled System for Scientific Workflows. The Workflow in Grid Systems Workshop
in GGF10 - The Tenth Global Grid Forum, Berlin, Germany (2004)

2. Campobasso, M., Giles, M.:Stabilization of a Linear Flow Solver for Turbomachinery
Aeroelasticity Using Recursive Projection Method. AIAA Journal, 42(9) (2004)

3. Churches, D., Gombas, G., Harrison, A., Maassen, J., Robinson, C., Shields, M., Taylor, I.,
Wang, I.: Programming Scientific and Distributed Workflow with Triana Services. Grid
Workflow Special Issue of Concurrency and Computation: Practice and Experience (2004)

4. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M., Vahi, K.,
Livny, M.: Pegasus: Mapping Scientific Workflows onto the Grid. Across Grids
Conference (2004)

5. Deelman, E., Blythe, J., Gil, Y., Kesselman, C.: Workflow Management in GriPhyN. The
Grid ResourceManagement, Kluwer (2003)

6. Gil, Y., Ratnakar, V., Deelman, E., Spraragen, M., Kim, J.: Wings for Pegasus: A Semantic
Approach to Creating Very Large Scientific Workflows. An internal project report (2006)

7. Goble, C.: Using the Semantic Web for e-Science: Inspiration, Incubation, Irritation.
Lecture Notes in Computer Science 3729:1-3, (2005)

8. Goble, C.: Position Statement: Musings on Provenance, Workflow and (Semantic Web)
Annotations for Bioinformatics. Workshop on Data Derivation and Provenance (2002)

9. Guo, Y., Pan, Z., Heflin, J.: An Evaluation of Knowledge Base Systems for Large OWL
Datasets,. Proc. of the Third International Semantic Web Conference (2004)

10. Hendler, J.: Science and the Semantic Web. Science 299 (2003) 520-521
11. Hustadt, U., Motik, B., Sattler, U.: Data Complexity of Reasoning in Very Expressive

Description Logics. Proc. of the 19th International Joint Conference on AI (2005)
12. Kim, J., Spraragen, M., Gil, Y.: An Intelligent Assistant for Interactive Workflow

Composition. Proceedings of the Intl. Conference on Intelligent User Interfaces(2004)
13. Kovatch, P.: TeraGrid Software Strategy: E Pluribus Unum. Department of Defense

Software Tech News (2004)
14. Maechling, P. et al.,: Simplifying Construction of Complex Workflows for Non-Expert

Users of the Southern California Earthquake Center Community Modeling Environment.
ACM SIGMOD Record, special issue on Scientific Workflows, 34 (3) (2005)

15. Myers, J., Pancerella, C., Lansing, C., Schuchardt, K., Didier, B.: Multi-scale Science:
Supporting Emerging Practice with Semantically-Derived Provenance. Semantic Web
Technologies for Searching and Retrieving Scientific Data Workshop (2003)

16. openRDF, 2006: http://www.openrdf.org/ (2006)
17. Open Science Grid 2006: http://www.opensciencegrid.org/gt4 (2006)
18. OWL-S, 2006. http://www.daml.org/services/owl-s/ (2006)
19. OWL Web Ontology Language, 2006: http://www.w3.org/TR/owl-features/ (2006)
20. Pearlman L.: Metadata Catalog Service for Data Intensive Applications. SC (2003)
21. Sabou, M., Wroe, C., Goble, C., Mishne, G.: Learning Domain Ontologies for Web Service

Descriptions: an Experiment in Bioinformatics. Intl. Conf. on World Wide Web. (2005)
22. Simmhan Y., Plale B., Gannon, D.: A Survey of Data Provenance in e-Science. SIGMOD

Record, vol. 34, 2005, pp. 31-36 (2005)
23. Singh, G., Bharathi, S., Chervenak, A., Deelman, E., Kesselman, C., Manohar, M., Patil, S.,

Pearlman, L.: A Metadata Catalog Service for Data Intensive Applications. SC (2003)
24. Sirin, E., Parsia, B., Hendler, J.: Filtering and selecting semantic web services with

interactive composition techniques. IEEE Intelligent Systems, 19(4) (2004)
25. Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated Discovery, Interaction

and Composition of Semantic Web services. Journal of Web Semantics 1(1) (2003)
26. TeraGrid 2006. NSF Teragrid Project, http://www.teragrid.org/ (2003)
27. Wong, S., Miles, S., Fang, W., Groth, P., Moreau, L.: Validation of E-Science Experiments

using a Provenance-based Approach. Proceedings of 4th UK e-Science All Hands Meeting
(AHM), Nottingham (2005)

28. Wroe, C., Goble, C., Greenwood, M., Lord, P., Miles, S., Papay, J., Payne, T., Moreau, L.:
Automating Experiments Using Semantic Data on a Bioinformatics Grid. IEEE Intelligent
Systems special issue on e-Science (2004)

29. Zhao, J., Goble, C., Stevens R., Bechhofer, S: Semantics of a Networked World: Semantics
for Grid Databases. Proc. of the First International IFIP Conference, ICSNW (2004)

