
A Constraint-based Approach to Horizontal Web
Service Composition

Ahlem Ben Hassine�, Shigeo Matsubara���, and Toru Ishida���

� Language Grid Project, National Institute of Information and Communications Technology
ahlem@nict.go.jp

� NTT Communication Science Laboratories, NTT Corporation
matsubara@cslab.kecl.ntt.co.jp

� Department of Social Informatics, Kyoto University
ishida@i.kyoto-u.ac.jp

Abstract. The task of automatically composing Web services involves two main
composition processes, vertical and horizontal composition. Vertical composition
consists of defining an appropriate combination of simple processes to perform
a composition task. Horizontal composition process consists of determining the
most appropriate Web service, from among a set of functionally equivalent ones
for each component process. Several recent research efforts have dealt with the
Web service composition problem. Nevertheless, most of them tackled only the
vertical composition of Web services despite the growing trend towards func-
tionally equivalent Web services. In an attempt to facilitate and streamline the
process of horizontal composition of Web services while taking the above limita-
tion into consideration, this work includes two main contributions. The first is a
generic formalization of any Web service composition problem based on a con-
straint optimization problem (COP); this formalization is compatible to any Web
service description language. The second contribution is an incremental user-
intervention-based protocol to find the optimal composite Web service according
to some predefined criteria at run-time. Our goal is i) to deal with many crucial
natural features of Web services such as dynamic and distributed environment,
uncertain and incomplete Web service information, etc; and ii) to allow human
user intervention to enhance the solving process. Three approaches are described
in this work, a centralized approach, a distributed approach and a multi-agent
approach to deal with realistic domains.

1 Introduction

The great success of Web services, due especially to their richness of application made
possible by open common standards, has led to their wide proliferation and a tremen-
dous variety of Web services are now available. However, this proliferation has rendered
the discovery, search and use of an appropriate Web services arduous. These tasks are
increasingly complicated, especially while dealing with composite Web service to re-
sponse to an ostensible long-term complex user’s goal. The automatic Web service com-
position task consists of finding an appropriate combination of existing Web services to
achieve a global goal. Solving this problem involves mixing and matching component
Web services according to certain features. These features can be divided into two main
groups:

– Features related to the user, including the user’s constraints and preferences.
– Features related to Web services and which can be divided into two subgroups,

internal and external features. Internal features include quality of service (QoS)
attributes, and external features include existing restrictions on the connection of
Web services, (e.g., a hotel room should be reserved for the ISWC2006 conference
usually after booking the flight). External features are specified in the Web ser-
vice ontology language, OWL-S [12], through a set of control constructs such as,
Sequence, Unordered, Choice, etc.

However, there is usually a choice of many Web services for each subtask that has
to be done to fulfill the main goal. We refer to these Web services as functionally equiv-
alent Web services. In the sequel of this paper, as is generally done in the literature, we
refer to each of subtasks making up the main goal as an abstract Web service and to
each Web service able to perform a subtask as a concrete Web service. Solving a Web
service composition problem means going through two types of composition process:

– Vertical composition, is aimed at finding the “best” combination of the abstract
Web services, i.e., abstract workflow, for achieving the main goal while satisfying
all existing interdependent restrictions.

– Horizontal composition, is aimed at finding the “best” concrete Web service, from
among a set of available functionally equivalent Web services, i.e., executable
workflow, to perform each abstract Web service. The quality of the response to the
user’s query (the composition task) considerably depends on the selected concrete
Web services. The choice of a concrete Web service is dictated to functional (i.e.,
related to the inputs) and/or non-functional attributes (i.e., related to the quality of
service attributes).

The main benefits from distinguishing between these two composition processes
are: i) simplifying Web service composition problem to reduce it computational com-
plexity, ii) avoiding any horizontal composition redundancy that may appear while
searching for the “best” orchestration of abstract Web services, and mainly iii) en-
suring more flexibility to the user intervention, i.e., user is able to modify/adjust the
abstract workflow when needed.

The combination of Web services has attracted the interest of many researchers,
amongst [9], [13], [8], [14], and several approaches have been reported. Most of these
deal only with vertical composition, where only single concrete Web service is available
for each abstract one. However, the tremendous growing number of functionally equiv-
alent concrete Web services makes the search for an appropriate one, i.e., horizontal
composition of concrete Web services, an NP-hard task [5]. This composition process
has the following characteristics.

– Information is often incomplete and uncertain.
– The environment is naturally distributed and dynamic.
– Many (non)-functional features, inter-related restrictions and especially the prefer-

ences of the user may affect the quality of the response to a user’s query.

Existing research efforts have tackled only some parts of the natural features of the
Web service composition problem [1], [7], none have tried to deal with all of them. Also,

some complex real-world problems require some level of abstract interactions with the
user to better search for a valid composite Web service. Finally, very few studies have
considered the validity of the information concerning a concrete Web service during the
composition process and none have dealt with this question of validity during the exe-
cution process. We have learned from all these works and we have focused our research
on the requirements of the Web service composition problem that are derived from the
natural features of the problem, search-based user interventions and the information va-
lidity during the composition and execution processes. Our main goal is to provide a
means by which an optimal composite executable workflow can be created for a given
set of sub-tasks with their inter-relation restrictions, i.e., an abstract workflow.

This paper consists of two main parts. The first is a generic formalization of any Web
service composition problem as a constraint optimization problem (COP) in which we
try to express most of the Web service composition problem features in a simple and
natural way. Our main purpose is to develop a common and robust means of express-
ing any Web service composition problem that ideally reflects realistic domains. The
second contribution is a real-time interactive protocol to solve any Web service com-
position problem by overcoming most of the above encountered limitations. Although,
there are various techniques for solving a COP, none of these integrate any user interac-
tion issues. The constraint optimization problem formalism is especially promising for
ideally describing any realistic Web service composition problem, because this problem
is a combinatorial problem that can be represented by a set of variables connected by
constraints. Three approaches are proposed in this paper, a centralized approach, a dis-
tributed approach and finally a multi-agent approach to reflect ideally realistic domains.

This paper is organized as follows. In Section 2, we give an overview of existing re-
searches. In Section 3, we present the proposed formalization. In Section 4, we describe
a real-world scenario. In Section 5, we describe the proposed algorithm. In Section 6,
we discuss possibilities of extensions of the previous algorithm. In Section 7, we con-
clude the paper.

2 Related Work

Several solutions to the Web service composition problem have been reported includ-
ing, integer programming (IP)-based techniques [2], [16], non-classical planning-based
techniques and logic-based techniques [9], [11]. Recently, some researchers have sug-
gested applying existing artificial intelligence (AI) optimization techniques, such as
genetic algorithms (GA), mainly to include some Quality of Service attributes in the
search process. Regarding IP-based proposed solutions [2], [16], authors assume linear-
ity of the constraints and of the objective function. As for non-classical planning tech-
niques, Sirin et al. proposed an HTN-planning based approach [13] to solve this prob-
lem. Their efforts were directed toward encoding the OWL-S Web service description
as a SHOP2 planning problem, so that SHOP2 can be used to automatically generate a
composite web service. McIlraith and Son [9] proposed an approach to building agent
technology based on the notion of generic procedures and customizing user constraints.
The authors claim that an augmented version of the logic programming language Golog
provides a natural formalism for automatically composing services on the semantic

web. They suggested not to consider this problem as a simple planning, but as a cus-
tomizations of reusable, high level generic procedures. Canfora et al. in [5] proposed
to tackle QoS-aware composition problem using Genetic Algorithm (GA). This work
deals with both vertical and horizontal compositions. However, to accomplish the Web
service composition task, the Web service composition procedure may need to retrieve
information from Web services while operating. Most studies have assumed that such
information is static [9], [13], [5]. Other studies have required an interactive process
with the user to get all the necessary information as inputs. Nevertheless, the static in-
formation assumption is not always valid, the information of various Web services may
change (i.e., it may be “volatile information” [1]) either while the Web service compo-
sition procedure is operating or during execution of the composition process. Kuter et
al. [7] present an extension of earlier non-classical planning-based research efforts to
better cope with volatile information. This arises when the information-providing Web
services do not return the needed information immediately after it is requested (or not
at all). In addition, Au et al. [1] proposed two different approaches for translating static
information into volatile information. They propose assigning a validity duration for
each item of information received from information-providing services.

3 Constraint-based Formalization of Horizontal Web Service
Composition

The constraint satisfaction problem (CSP) framework is a key formalism for many com-
binatorial problems. The great success of this paradigm is due to its simplicity, its nat-
ural expressiveness of several real-world applications and especially the efficiency of
existing underlying solvers. We therefore believe that CSP formalism allows a better
and more generic representation of any Web service composition problem. Hence, we
formalize the Web service composition problem as a constraint optimization problem
(COP) in which we have two kinds of constraints: hard and soft constraints.

A static CSP is a triplet (X, D, C) composed of a finite set X of n variables, each
of which takes a value in an associated finite domain D and a set C of e constraints
between these n variables [10]. Solving a CSP consists of finding one or all complete
assignments of values to variables that satisfy all the constraints. This formalism was
extended to the COP to deal with applications where we need to optimize an objective
function. A constraint optimization problem is a CSP that includes an objective func-
tion. The goal is to choose values for variables such that the given objective function is
minimized or maximized.

We define a Web service composition problem as a COP by (X, D, C, f (sl)) where:

– X=�X�, � � �, X�� is the set of abstract Web services, each X� being a complex
variable represented by a pair (X�.in, X�.out) where

� X�.in=�in��, in��, � � �, in��� represents the set of p inputs of the concrete Web
service, and

� X�.out=�out��, out��, � � �, out�� � represents the set of q outputs of the concrete
Web service.

– D=�D�, � � �, D�� is the set of domains, each D� representing possible concrete Web
services that fulfill the task of the corresponding abstract Web service.
D�=�s��(s�� .in, s�� .out) � s�� .in � X�.in AND X�.out � s�� .out�

– C=C� � C�

� C� represents the soft constraints related to the preferences of the user and to
some Quality of Service attributes. For each soft constraint C�� � C� we assign
a penalty �	��

� [0, 1]. This penalty reflects the degree of unsatisfiability of
the soft constraint C��.

� C� represents the hard constraints related to the inter-abstract Web services
relations, the OWL-S defined control constructs4, and the preconditions of each
concrete Web service. For each hard constraint C�� � C� we assign a weight
� (i.e. it should be imperatively satisfied). It is noteworthy that C� may include
also some hard constraints specified by the user, these hard constraints can be
relaxed upon request whenever no solution is found for the problem.

– For each concrete Web service we assign a weight to express the degree of user
preference, w
�� � [0,1]. Weights are automatically accorded to the values of vari-
ables in a dynamic way with respect to the goal.

– f (sl) is the objective function to optimize, f (sl)=	
���
�(user’s preferences, penalty
over soft constraints, Quality of Service attributes, probability of information expi-
ration), and sl is a solution of the problem defined by the instantiation of all the
variables of the problem. In this work, we focus on optimizing both i) the user’s
preferences toward selected concrete Web services denoted by � (sl) and ii) the
penalty over soft constraints denoted by �(sl). The Quality of Service attributes
and the probability of information expiration will be tackled in our future work.

Solving a Web service composition problem consists of finding a “good” assignment
sl� � Sol:=D�
 � � �
 D� of the variables in X such that all the hard constraints are
satisfied while the objective function f (sl) is optimized according to Eq. 1.

������ � �	
 ���

�����

	������� ������ (1)

In this paper, we maximize the summation of the user preferences for all concrete Web
services involved in the solution sl and minimize the summation of the penalties asso-
ciated to all soft constraints5 according to Eq. 2.

������ � �	
 ���

�����

�
�

���
�

�
�� �
�

	���	�

�	��
� (2)

Since the solution might not be only a sequence of concrete Web services, i.e., it may in-
clude concurrent concrete Web services, we use “,” to indicate the sequential execution
and “�” to indicate concurrent execution. This information is useful in the execution
process. The obtained solution will have a structure such as, sl=�s��, �s���s�
�, s��,
� � �, s���. This problem is considered to be a dynamic problem since the set of abstract

4 Our formalization for the OWL-S control constructs will be described below in more detail.
5 To allow more flexible and wider expression, we do not restrict the objective function to any

kind of function.

Web services (the set of variables) is not fixed; i.e., an abstract Web service can be di-
vided into other abstract Web services if there is no available concrete Web services to
perform the required task. In addition, the set of values in the domain of each variable
(the set of possible concrete Web services) is not fixed. Concrete Web services can be
added/removed to/from the system.

In the Web services composition problem, several control constructs connecting
Web services can be used. The main ones, defined in the OWL-S description, can be
divided into four groups and we describe our formalization for these four groups below.

– Ordered, which involves the SEQUENCE control construct, can be expressed using
a hard constraint. Each pair of abstract Web services linked by a sequence control
construct are involved in the same C�������� constraint.

– Concurrency involves the SPLIT, SPLIT+JOIN, and UNORDERED control con-
structs. The natural aspect of the following proposed agent-based approach (Sec-
tion 5) allows the formalization of this control construct in a natural way. Note that
only “JOIN” will be associated with a C���� constraint. SPLIT and UNORDERED
will be modeled using an “empty” constraint C����� , that represents a universal
constraint. This constraint will be used to propagate information about parallel ex-
ecution to concerned variables in the following proposed protocol.

– Choice involves IF-THEN-ELSE and CHOICE control constructs. For each set of
abstract Web services (two or more) related by the IF-THEN-ELSE or CHOICE
control construct, the corresponding variables are merged into the same global vari-
able (X� for example), and their domains are combined and ranked according to the
preference of the user. For example a set of m abstract Web services (�t �, t�, � � �,
t��) related by the “CHOICE” control construct, we combine them into a global
variable (X
 for example) and rank their domains. For their preconditions, we as-
sign a sub-constraint to each condition �C�����, C�����, � � �, C������ and create a
global constraint C	�����=�� C�����. At any time we are sure that only one condi-
tion will be satisfied since
� C�����=�.

– LOOP, neither the CSP formalism nor any of its extensions can handle iterative
processing. It will be considered in our future work.

4 Real-world Scenario

Consider a situation where a person living in France wants to organize a trip to Japan
to have laser eye-surgery. After the surgery, he will have to make appointments with his
ophthalmologist in France for post-operative examinations. This task involves several
interrelated subtasks as shown in Figure 1(a):

– t� = Withdraw money from the bank to pay for the plane fare, surgery, accommo-
dation, and treatment,

– t� = Make an appointment with the doctor, get the address of the clinic and deter-
mine the price of the surgery,

– t� = Reserve a flight,
– t� = Reserve accommodation, which involves,

� t��� = Reserve accommodation in a nearby hotel if the price is less than or
equal to US$100 per night,

� t��� = Reserve accommodation at a hostel if the cost of a hotel exceeds US$100
per night,

– t� = Make an appointment with his ophthalmologist for an examination one week
after returning to France.

t2=s22

t1=s11

t3=s34 t4=s44

t5=s51

(b)

t2

t1

t3

t4-1

t5

(a)

t4-2

If-Then-Else

Split-Join

Sequence

Sequence

s21
s31

s23
s52 s11 s53

WSs Repository

X1

X2

X3

X4

X5

Fig. 1. (a) The set of tasks for the example with their pairwise control constructs, (b) The corre-
sponding executable workflow solution for the problem.

This problem can be formalized as follow:

– X=�X�, X�, X�, X�, X��, where each X�=(X�.in; X�.out) corresponds to one of the
above tasks (Figure 1(a)).
� X� corresponds to the task of withdrawing the required amount of money;

X�.in=�Id, Password, Amount�; X�.out=�RemainAmount�;
� X� corresponds to the task of making an appointment for the surgery; X �.in=�Disease,

Date�; X�.out=�ClinicName, Place, Confirmation, Price�;
� X� corresponds to the task of booking a flight; X�.in=�Destination, Date, Pa-

tientName�; X�.out=�FlightNumber, Price�;
� X� corresponds to the two tasks to reserve accommodation in either a hotel or a

hostel depending to the cost. Recall that in our formalization we combine into
the same variable the tasks implied in the same CHOICE relation. In this exam-
ple t��� and t��� are involved in the same IF-THEN-ELSE control construct,
so we combine them into X�; X�.in=�Name, Place, Date, NightsNumber, Max-
Price�; X�.out=�Hotel/hostelName, Address, Price�;

� X�.in=�DoctorName, PatientName, Date, TreatmentType�; X�.out=�Confirmation,
Price�;

– D=�D�, D�, D�, D�, D��, where:
D�=�s���, D�=�s��, s��, s���, D�=�s��, s��, s��, s��, s���6, D�=�s��, s��, s��, s���,
D�=�s��, s��, s��, s���,

– C=C� � C� , where
� C� including

� X�.Id �� nil;
� X�.Amount � X�.Price + X�.Price + X�.Price + X�.Price
� X�.Date
 X�.Date;
� X�.Date
 X�.Date;
� X�.Price � US$100;
� X�.Date + X�.NightsNumber+7
 X�.Date;

� C� including
� Distance(X�.Place, X�.Place)�10km7.

– For each s�� � D�, we assign a weight w
�� to express the degree of preferences of
the user PrefUser(D�),
PrefUser(D�)=�1�, PrefUser(D�)=�0.26, 0.73, 0.58�, PrefUser(D�)=�0.53, 0.61,
0.35, 0.82, 0.12�, PrefUser(D�)=�0.33, 0.71, 0.63, 0.84�, PrefUser(D�)=�0.87,
0.25, 0.59, 0.66�.
These degrees of preferences are subjective values and depend on the user.

– The main objective is to find the best combination sl of the above abstract Web ser-
vices and assign the most appropriate concrete Web services such that sl maximizes
the objective function f (sl) defined in Section 3 Eq. 2. Note that for simplicity, we
assume inter-independence between the values of the different domains. We will
consider dependence issues in future work.

Assume that Distance(s��, s��)= 13km, Distance(s��, s��)= 11km and Distance(s��,
s��)= 20km, and the penalty over this soft constraint, Distance(X �.Place, X�.Place)�10km
decreases as the distance converges to 10km, then ���
������
�� �
���
���
������
�� �
���

���
������
���
���. The most preferred solution for this problem is, sl=�s��, ��s��, s���
� s���, s��� (Figure 1(b)) with �(sl)= 0.73+0.82+0.84+0.87+1=4.26

5 Constraint Optimization Problem Interactive Algorithm for
Solving the Web Service Composition Problem

The overall objective of our approach is to generate the best executable workflow (ac-
cording to the aforementioned criteria) within a feasible time. Several constraint opti-
mization problem algorithms can be applied to solve this problem, but none allows the
intervention of the human user during the search process. In the following, we propose
an algorithm (Algorithm 1) that allows human interaction with the system to enhance
the solving process.

For each variable X�
8 we first determine a set of candidate concrete Web services,

Cand��
for its abstract Web service that satisfies all the hard constraints C�� � C� (Al-

gorithm 1 line 4), and then we rank Cand��
according to the objective function defined

6 For example, Air France Web service, Lufthansa Web service, etc.
7 Distance(x� y) is a function that returns the distance between two places.
8 The variables are ordered according to the input abstract workflow.

in Section 3. This ranked set is used to guide the selection of the next variable X ��� in
the search process. For X��� we proceed first by applying join operation to the received
list Cand��

and the current one Cand����
, i.e., Cand��

�� Cand����
(Algorithm 1

line 12). The obtained sub-solutions are then filtered (Algorithm 1 line 12) according to
the set of existing hard constraints. Finally, the resulting set of sub-solutions is ranked
according to the objective function for optimization. If the set of candidates Cand ��

is
large, to avoid explosion in the join operation, we select a fixed number of the most pre-
ferred concrete Web services for each variable, (i.e., a subset of candidates), and try to
propagate these to the next variable. Whenever this subset does not lead to a complete
solution, we backtrack and then seek a solution using the remaining candidates. The
order of the values in the candidate set is established to avoid missing any solution. The
obtained sets of sub-solutions are propagated to the next variable (Algorithm 1 line 16)
and the same dynamic resumes until the instantiation of all the abstract Web services.
If the set of candidate Web services becomes empty (i.e., none of the available Web ser-
vices satisfies the hard constraints), or the set of sub-solutions resulting from the join
and filter operations becomes empty and no more backtrack can be performed, the user
is asked to relax some of his/her constraints (Algorithm 1 line 23). However, if the re-
laxed user’s constraints involve the first instantiated variable in the search tree then the
search process is performed from scratch. It is noteworthy that three issues are possible
in this algorithm, i) Ask user intervention whenever a local failure is detected, which
may reduce the number of backtracks, ii) Ask user intervention only when a global fail-
ure is detected, no more backtracks can be performed, iii) keep trace of the explored
search tree to be able to point directly to the concerned variable by user relaxation and
pursue the solving process and avoid some computational redundancy.

In addition, whenever we need any information concerning any concrete Web ser-
vices, a request-message is sent to an information-providing Web service to get the
necessary information along with both its validity duration and the maximum time re-
quired to execute the underlying Web service. The agent should maintain this time so
that it can detect the information expiration and perform right decision (Algorithm 1
line 20). To deal with the main characteristic of this real-world problem, the dynamic
environment, we maintain the validity of necessary information during the solving and
execution processes, totalTime. totalTime should be less than the minimum validity time
required for any Web service information. We use the following denotation:

– T����(sl): necessary time needed to provide a plan sl,
– t���(s�): needed time to execute one concrete Web service,
– t���(inf �): estimated time before the expiration of solicited information inf � .

Naturally, the validity of information is usually considered as uncertain. Hence, for each
validity time a probability of information alteration p���(inf �) can be associated with
to the underlying information inf �. We will consider this probability of information
alteration in our future work. The maximal time T ���� required to provide a solution is
defined by Eq. 3.

������sl�
 ���
�
� �
�	

t����inf���
�

��
�

t�������	 (3)

Algorithm 1 User-intervenstion-based algorithm for Web service composition.
WSCSolver(i, setSubSol, totalTime, checkedValues)
1: if i��X� then
2: return setSubSol;
3: end if
4: Cand� [i] � �s�� � D� � s�� satisfies all the C�� � checkedValues[i];
5: if information required for any s�� � Cand� [i] then
6: Collect necessary information; Update t���, t	
	 and totalTime;
7: end if
8: Rank Cand� [i] according to w��� and ����

and while checking t���, t	
	 and totalTime;
9: subSol � �;

10: while subSol = � do
11: subCand � subset of the Cand� [i]; add(checkedValues[i], subCand);
12: subSol � setSubSol �� subCand; Filter and Rank subSol according to f (subSol);
13: end while
14: if subSol 	� � then
15: add(setSubSol, subSol);
16: return WSCSolver(i+1, setSubSol, totalTime, checkedValues);
17: else
18: if i � 1 then
19: reset to � all checkedValues[j] for j�i;
20: Update totalTime; Update setSubSol;
21: return WSCSolver(i-1, setSubSol, totalTime, checkedValues);
22: else
23: RelaxedConst � ask User to relax constraints involving X� where k � i;
24: Update(C� , C
 , RelaxedConst);
25: i � j such that
 X� involved in C� and C� � RelaxedConst, X� ��� X�;
26: Update setSubSol;
27: return WSCSolver(i+1, setSubSol, totalTime, checkedValues);
28: end if
29: end if

Each sub-solution based on expired information will be temporarily discarded but
kept for use in case the agent cannot find any possible solution. This measurement is
an efficient way to cope with Web services with effects characterized mainly by their
volatile information because it allows a forward estimation of the validity of information
during both the composition process and the execution process.

6 Extended Algorithms

6.1 Web Service Composition Problem Distributed Algorithm

The main limitation of the previous algorithm is that it cannot be easily adapted to any
alteration in the environment. Whenever a user decides to relax some of his/her con-
straints, and these constraints involve already invoked variable, especially the first one
in the search tree, the search for a solution will be performed from scratch. However,

distributed approaches can be easily adapted to the user intervention. In this solution
the same algorithm will be split on among set of homogeneous entities. Each entity
will be responsible of one variable and the same algorithm will be performed in paral-
lel by this set of entities. In case of conflicts, i.e., no solution can be generated and no
backtrack can be performed, the system will ask the user to relax some constraints. The
concerned entity will update its view, generate new candidates and exchange them with
other concerned entities. The process resumes until either a solution for the problem is
generated or its insolubility, even with all possible relaxations, is proven. Nevertheless,
this distributed solution might be inefficient for some real-world scenarios where we
need to access a specialized Web service. A specialized Web service maintains infor-
mation about a set of Web services; for example, HotelsByCity.com maintains infor-
mation about several hotels’ Web services. The information concerning involved Web
services is considered private, which makes it difficult to gather Web services needed
information on same site and process them. Hence, we believe that extending the above
algorithm to a multi-agent system is more effective for realistic domains.

6.2 Multi-agent System for Web Service Composition Problem

The underlying multi-agent architecture consists of three kinds of agents, abstract Web
service agents, one or more Information-providing agents and an Interface agent. The
Interface agent is added to the system to inform the user of the result. Each agent A �

maintains total validity time for all selected Web services, valTime�� . This information
is locally maintained by each agent and updated each time a requested information is
received. All the agents will cooperate together via sending point-to-point messages
to accomplish their global goal. We assume that messages are received in the order in
which they are sent. The delivery time for each message is finite. The agents are ordered,
according to the input abstract workflow, from higher priority agents to lower priority
ones so that each constraint will be checked by only one agent. For each successive two
subtasks t� and t� such that t�
t� , their corresponding agents will be ordered as follows:
A� ��� A� , and the agent A� (resp. A�) is called Parent (resp. Children) for A� (resp.
A�). The ordered links between agents, from the Parents to their Children, represent the
inter-agent hard constraints between the corresponding abstract Web service; i.e., these
relations represent OWL-S control constructs (sequence, choice, ordered, etc.) and/or
hard/soft user constraints.

Each agent A� first reduces the set of candidate concrete Web services, Cand��

for its abstract Web service by keeping only those that satisfy all the hard constraints
(Algorithm 2, line 1), ranks it according to the user preferences (i.e., w
��), and to the
degree to which the soft intra-constraints are satisfied (Algorithm 2, line 15), selects
subset of “best” candidates then sends it to its Children�� (Algorithm 2, line 17). If the
set of candidate Web services is empty, then the user is asked to relax some of his/her
constraints. In addition, whenever the agent needs information concerning any concrete
Web service, it sends a message (RequestInformationFor:) to the information-providing
agent to get the necessary information along with its validity and the maximum time
needed to execute the underlying Web service (Algorithm 2, line 10). The agent should
retain this time so that it can detect information expiration and perform right decision,
i.e., update the current solution when necessary. Each agent receiving needed infor-

Algorithm 2 Start message executed by each agent A� .
Start
1: Select Cand��

� D� � all intra-C
��

� are satisfied;
2: listRequest � �;
3: while Cand��

=� do
4: Ask user to relax some of his hard constraints;
5: end while
6: for all s� � Cand��

do
7: if inf � required for s� then
8: listRequest � listRequest
 s�;
9: end if

10: send(Information-providing, self, RequestInformationFor:listRequest);
11: end for
12: while listRequest 	� � do
13: Wait; /*Information required for Web services*/
14: end while
15: Rank Cand��

according to w��� and ����
;

16: for all A� � Children�� do
17: send(A�, self, process:Cand�� within:valTime��);
18: end for

mation from the Information-providing agent first updates its dynamic knowledge, and
then checks whether any of the information may expire before executing the workflow.
If this is the case for any of the received information, the affected Web service, s �
 will
be discarded from the set of possible candidates. Finally, the agent ranks the remaining
candidates and sends them to its Children for further processing. Each agent A � receiv-
ing a message to process candidate concrete Web services from its Parents or to process
a set of sub-solutions proceeds by first performing a join operation on all received lists
(Algorithm 3 line 1). The obtained sub-solutions are then filtered according to the set
of existing hard constraints and then ranked according to the soft constraints and user
preferences (Algorithm 3 line 3). If the set of sub-solutions is empty for the agent A �,
then a request is sent to parents to ask for more possible candidates in a predefined or-
der to ensure the completeness of the proposed protocol (Algorithm 3, line 7). In case,
all the possible candidates are processed and the set of possible solution is still empty,
the concerned agent asks the user to relax some of his/her constraints related directly
or indirectly to the variable X� maintained by A�. Thus, the appropriate agent will be
invoked to first update its set of hard constraints and then define new candidates and
send them again to the Children (Algorithm 3, line 14). The same process resumes until
stable state is detected.

In real-world scenarios, the Web service composition problem is subject to many
changes, defined on one side by the arrival of new Web services and on the other side
by the inaccessibility of one or more Web services. For each new Web service, the
appropriate agent will check whether this Web service can be included in the set of
candidates. If this new Web service satisfies the hard constraints and increases f (sl), it
will be communicated to the Children to upgrade their set of sub-solutions, if possible.

Algorithm 3 Process-within message executed by each agent A�.

Process:list�� within:t
1: PossibleTuple�� � Cand��

; PossibleTuple�� � PossibleTuple�� �� list�� ;
2: if All list�� are received from Parents�� then
3: Filter PossibleTuple�� such that
 tuple�� � PossibleTuple�� , tuple�� satisfies the inter-

agent constraints (C��

�) and optimize the predefined criteria (Section 3);
4: update totalTime�� ;
5: if PossibleTuple�� = � then
6: if Possible backtrack then
7: send Backtrack message to Parents�� to ask for more candidates;
8: else
9: Ask user to relax some of his hard constraints related in/directly to X�;

10: end if
11: else
12: Rank PossibleTuple�� according to the criteria defined in Section 3;
13: for all A� � Children�� do
14: send(A� , self, process:PossibleTuple�� within:valTime��);
15: end for
16: end if
17: end if

Otherwise, the new candidate will be ignored. As for each Web service that becomes
inaccessible during the composition process, the appropriate agent should first check
whether this Web service is included in the set of sent candidates. If this is not the
case, the agent will only update its dynamic knowledge; if the inaccessible Web ser-
vice has already been communicated to the Children, the agent should ask its Children
temporarily not consider this Web service in case it is involved in their sub-solutions.

The stable state is progressively detected by all the abstract Web service agents [4].
The main idea is to define an internal state for each agent A �. This state is set to true
if and only if the internal states of all the children are true and agent A � succeeds in
finding an appropriate concrete Web service for its abstract one. The stable state will
be detected by the children and progressively propagated to the parents. Each agent that
has no parents, Parents�� = �, informs the Interface agent regarding the final state. The
Interface agent communicates the result to the user.

7 Conclusion

The Web service composition problem is a challenging research issue because of the
tremendous growth in the number of Web services available, the dynamic environment
and changing user needs. In this paper, we have proposed a real-time interactive so-
lution for the Web service composition problem. This problem consists of two main
composition processes, vertical composition and horizontal composition and we have
focused on the horizontal composition process. This work complements existing tech-
niques dealing with vertical composition in that it exploits their abstract workflow to
determine the best executable one according to predefined optimality criteria. We have

developed a protocol that overcomes the most ascertained limitations of the existing
works and comply with most natural features of a realistic Web service composition
problem such as the dynamism of the environment and the need to deal with volatile in-
formation during the composition and execution processes, etc. Three main approaches
were proposed in this paper, the first is a user-intervention based-centralized approach,
the second is a distributed version of the previous one that can be easily adapted to any
environment’s alterations and the third is a multi-agent approach to cope better with re-
alistic domains where problem required information is maintained by specialized Web
services. The multi-agent approach is currently under implementation and testing.

References

1. Au, T-C., Kuter, U. and Nau, D., Web Services Composition with Volatile Information. In
proc. ISWC’05, pp. 52-66, 2005.

2. Aggarwal, R., Verma, K., Miller, J., and Milnor, W. Constraint Driven Web Service Compo-
sition in METEOR-S. In proc. IEEE Int. Conf. on Services Computing, pp.23-30, 2004.

3. Aversano, L., Canfora, G. Ciampi, A., An algorithm for web service discovery through their
composition. In proc. IEEE ICWS’04, 2004.

4. Ben Hassine, A., and T.B. Ho, Asynchronous Constraint-based Approach - New Solution for
any Constraint Problem. In proc. AAMAS RSS’2006, 2006.

5. Canfora, G., Penta, M.D., Esposito, R. and Villani, M.L., An Approach for QoS-aware Service
Composition bsed on Genetic Algorithms. In proc. ACM GECCO’05, pp. 25-29, 2005.

6. Dechter, R. and Dechter, A., Belief Maintenance in Dynamic Constraint Networks. In proc.
7th National Conf. on Artificial Intelligence, AAAI-88, pp. 37-42, 1988.

7. Kuter, U., Sirin, E., Parsia, B., Nau, D. and Hendler, J., Information Gathering During Plan-
ning for Web Service Composition. In proc. ISWC’04, 2004.

8. Lin, M., Xie, J., Guo, H. and Wang, H., Solving Qos-driven Web Service Dynamic Composi-
tion as Fuzzy Constraint Satisfaction. In proc. IEEE Int. Conf. on e-Technology, e-Commerce
and e-service, EEE’05, pp. 9-14, 2005.

9. McIlraith, S. and Son, T.C., Adapting Golog for Composition of Semantic Web Services. KR-
2002, France, 2002.

10. Montanari, U., NetWorks of Constraints: Fundamental Properties and Applications to Picture
Processing. In Information Sciences, Vol. 7, pp. 95-132, 1974.

11. Narayanan, S. and McIlraith, S., Simulation, Verification and automated Composition of Web
Services. In Proceeding 11th Int. Conf. WWW, 2002.

12. OWL Services Coalition, OWL-S: Semantic markup for web services, OWL-S White Paper
http://www.daml.org/services/owl-s/1.0/owl-s.pdf, 2003.

13. Sirin, E., Parsia, B., Wu, D., Hendler, J. and Nau, D., HTN Planning for Web Service Com-
position Using SHOP2. In Journal of Web Semantic Vol. 1, pp. 377-396, 2004.

14. Ishida, T., Language Grid: An Infrastructure for Intercultural Collaboration. Valued Con-
straint Satisfaction Problems: Hard and Easy Problems. In IEEE/IPSJ Symposium on Appli-
cations and the Internet (SAINT-06), pp. 96-100, 2006.

15. Yokoo, M. Ishida. T, and Kuwabara, K. Distributed Constraints Satisfaction for DAI Prob-
lems. In 10th Int. Workshop in Distributed Artificial Intelligence (DAI-90), 1990.

16. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., and Chang, H. QoS-
aware middleware for web services composition. IEEE Trans. Software Engineering, 30(5),
2004.

